Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

cond(TRUE, x, y) → 1@z
cond(FALSE, x, y) → *@z(2@z, log(x, *@z(y, y)))
logNat(TRUE, x, y) → cond(<=@z(x, y), x, y)
log(x, y) → logNat(&&(>=@z(x, 0@z), >=@z(y, 2@z)), x, y)

The set Q consists of the following terms:

cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
logNat(TRUE, x0, x1)
log(x0, x1)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

cond(TRUE, x, y) → 1@z
cond(FALSE, x, y) → *@z(2@z, log(x, *@z(y, y)))
logNat(TRUE, x, y) → cond(<=@z(x, y), x, y)
log(x, y) → logNat(&&(>=@z(x, 0@z), >=@z(y, 2@z)), x, y)

The integer pair graph contains the following rules and edges:

(0): COND(FALSE, x[0], y[0]) → LOG(x[0], *@z(y[0], y[0]))
(1): LOGNAT(TRUE, x[1], y[1]) → COND(<=@z(x[1], y[1]), x[1], y[1])
(2): LOG(x[2], y[2]) → LOGNAT(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)), x[2], y[2])

(0) -> (2), if ((*@z(y[0], y[0]) →* y[2])∧(x[0]* x[2]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(<=@z(x[1], y[1]) →* FALSE))


(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)) →* TRUE))



The set Q consists of the following terms:

cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
logNat(TRUE, x0, x1)
log(x0, x1)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): COND(FALSE, x[0], y[0]) → LOG(x[0], *@z(y[0], y[0]))
(1): LOGNAT(TRUE, x[1], y[1]) → COND(<=@z(x[1], y[1]), x[1], y[1])
(2): LOG(x[2], y[2]) → LOGNAT(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)), x[2], y[2])

(0) -> (2), if ((*@z(y[0], y[0]) →* y[2])∧(x[0]* x[2]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(<=@z(x[1], y[1]) →* FALSE))


(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)) →* TRUE))



The set Q consists of the following terms:

cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
logNat(TRUE, x0, x1)
log(x0, x1)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND(FALSE, x, y) → LOG(x, *@z(y, y)) the following chains were created:




For Pair LOGNAT(TRUE, x, y) → COND(<=@z(x, y), x, y) the following chains were created:




For Pair LOG(x, y) → LOGNAT(&&(>=@z(x, 0@z), >=@z(y, 2@z)), x, y) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(<=@z(x1, x2)) = -1   
POL(LOGNAT(x1, x2, x3)) = -1 + x2 + (-1)x3   
POL(>=@z(x1, x2)) = -1   
POL(0@z) = 0   
POL(*@z(x1, x2)) = x1·x2   
POL(TRUE) = -1   
POL(&&(x1, x2)) = 1   
POL(2@z) = 2   
POL(LOG(x1, x2)) = -1 + x1 + (-1)x2   
POL(FALSE) = -1   
POL(COND(x1, x2, x3)) = -1 + x2 + (-1)x3   
POL(undefined) = -1   

The following pairs are in P>:

COND(FALSE, x[0], y[0]) → LOG(x[0], *@z(y[0], y[0]))

The following pairs are in Pbound:

COND(FALSE, x[0], y[0]) → LOG(x[0], *@z(y[0], y[0]))

The following pairs are in P:

LOGNAT(TRUE, x[1], y[1]) → COND(<=@z(x[1], y[1]), x[1], y[1])
LOG(x[2], y[2]) → LOGNAT(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)), x[2], y[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

*@z1
&&(FALSE, FALSE)1FALSE1
&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
IDP
              ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): LOGNAT(TRUE, x[1], y[1]) → COND(<=@z(x[1], y[1]), x[1], y[1])
(2): LOG(x[2], y[2]) → LOGNAT(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)), x[2], y[2])

(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(&&(>=@z(x[2], 0@z), >=@z(y[2], 2@z)) →* TRUE))



The set Q consists of the following terms:

cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
logNat(TRUE, x0, x1)
log(x0, x1)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.